From: Wally Flint

To: Microsoft ATR
Date: 12/19/01 5:02pm
Subject: antitrust issues

e sfe sfe sk sk sk sk st sfe sfe sfe she sk sk ke sie st sfe sfe sfe sk sk sk sk st sfe sfe sfeseoskeosk sk sk e e sk sk

THE IDEA PROPOSED HEREIN IS THE DEVELOPMENT OF A STANDARD SET OF OPERATING
SYSTEM COMPONENTS. The specification of these components is not a

specification for how the components should work. Instead, it is only a

specification for the nature and scope of components (what module does

what), together with the interfaces for the components (how to "connect to"

a component, or how to access the functionality of each component). I call

this operating system the "Standard Operating System" (SOP).
st sfe sfe sk sk s sk st st sfe sfe sk ske sk sk sk st sfe sfe sfe skeoske sk sk sk ske sl sfeseoskoskosk sk skeskeskeosk

METHODOLOGIES

Many well-known software companies (BEA, IBM, Sun, ...) compete on a level
playing field to produce J2EE application servers. This "fair and

competitive market" did not emerge from the mist of random free market
chaotic activity. Instead, it developed on the basis of the following
methodologies:

1) Modularization of Software

Dell manufactures computers from video cards, mother boards, and other
electronic modules and components. Contrast this with the old way of
carrying out circuit design - wiring together a bunch of resistors and
transistors. With the old methodology, every electronic product was
essentially "custom built". Then, electronic hardware became modularized.
The integrated circuit (IC) offered complex functionality (such as an
amplifier) as a modular unit. Circuit boards (like a PC's mother board or
video card) offered even more complex functionality as a modular unit. If a
circuit board goes bad, just replace it with a new one (as opposed to
replacing the entire computer). If a cheaper video card appears on the
market, companies like Dell can lower costs by changing to the new cheaper
video card.

This modularization could not have developed without standards. For example,
circuit boards have standard connectors that plug into standard sockets in

the PC. If every video card had its own custom connector, then each PC

design could use one and only one type of video card.

Just as electronic products are built from standard modules, large complex
software programs may be built from standard software modules. For this to
happen, the interface for accessing the functionality of that component must
be defined. Standardizing a software module interface is analogous to
standardizing circuit board connectors. For example, if a software module
draws lines on the screen, then the line drawing functionality may possibly

MTC-00004779 0001



be accessed by calling a "drawLine" function, a "paintLine" function, a
"renderLine" function, and so on. A standard is developed by choosing one of
these names, and asking all component developers to use the same name. This
allows software modules to be mixed and matched for a variety of purposes
(optimization of cost, speed, quality, ...), just as hardware components are
mixed and matched in the design of a PC.

2) Community Process

Sun has developed a community process, called the "Java Community Process",
for allowing interested parties to influence the development of a standard.
(www.jcp.org)

3) Proving Compliance with a Standard

To prove compliance with a standard, a compatibility test suite is
developed. A compatibility test suite is a software application that
exercises the various functionalities of a software module, and verifies

that the behavior that results is the same behavior as that required by the
standard. The same compatibility test suite is used for all software module
developers, producing a "level playing field" for competition in meeting the
standard.

(http://developer.java.sun.com/developer/technical Articles/JCPtools/)

e sfe sfe sk sk sk sk st sfe sfe sfe she sk sk ke sie st sfe sfe sfe sk sk sk sk st sfe sfe sfeseoskeosk sk sk e e sk sk

IMPORTANT FEATURES OF THE METHODOLOGIES DESCRIBED ABOVE

A) These methodologies allow code to remain proprietary (unless a company
elects to open source its code), yet still facilitate competition for all

operating system components. They also facilitate mixing and matching
components. You could run a Microsoft kernel with a windowing system from
company XYZ, or visa versa. Allowing code to remain proprietary stimulates
competition and investment, promotes quality, and is fair to investors.

B) Part of the difficulty in solving the anti-trust problem lies in defining
where the operating system ends and software applications begin. Should an
instant messenger be classified as an operating system component, or is it a
software application? This issue is highly significant when trying to
determine whether Microsoft is bundling its applications with its operating
system, and thereby forcing consumers to purchase the applications in order
to get the operating system. I call this bundling phenomenon "operating
system creep". Operating system creep is the process of expanding the
definition of word "operating system" for the purpose of legitimizing the
practice of bundling applications with the operating system.

The above methodologies indirectly provide a solution to the problem of
operating system creep. Assume the standard operating system is developed as
a bunch of components, instead of as one giant blob. In this case, the

MTC-00004779 0002



standard for a given component may change frequently while the standard is
maturing. However, the standard for that component will eventually
stabilize, and thereafter the standard will probably not change very often.

After a component standard has stabilized, companies that develop that
component are not affected by operating system creep. That is, if company
XYZ markets a component for rendering the desktop on the screen, then that
component cannot be adversely affected if Microsoft bundles an instant
messenger component with its version of SOP. Under the current situation (no
standardized modularization), the entire operating system is pushed onto the
consumer as a single giant "blob" (a single giant component), and in this

case, no other company can compete to provide this giant component, because
the component changes with each iteration. (For example, the giant component
may include an instant messenger in one iteration, where it did not include

an instant messenger in the previous iteration.) But with standardized
componentization, the standard for a given operating system module
eventually stabilizes, and all companies can then easily compete to

implement that standard. The point is that the standard for a stabilized
component cannot be affected by changing the scope of what is considered the
"operating system".

C) In order to end up with a quality design, an industry consortium should
develop the standardized interfaces, as well as the scope of those

interfaces (should it be one big interface, or a component for screen
rendering, a component for I/O, and so on? should screen rendering be one
big component, or should it be broken into several sub-components?). The
industry consortium could standardize components using a process similar to
the java community process described above.

e sfe sfe sk sk sk sk st sfe sfe sfe she sk sk ke sie st sfe sfe sfe sk sk sk sk st sfe sfe sfeseoskeosk sk sk e e sk sk

ONE ASPECT OF THE REMEDY

Suppose the Windows operating system is required to implement the SOP
interfaces. In this case, if Microsoft applications (such as Microsoft Word)
communicate with Windows using proprietary (non-standard) interfaces, then
this effectively creates an artificial shortage of applications for

competing operating systems. Looked at another way, it forces competing
operating systems to implement the proprietary interfaces to become
"Microsoft Word compatible", and thereby destroys the standard. Perhaps one
aspect of a remedy could be requiring Microsoft applications to use ONLY the
standardized interfaces.

MTC-00004779 0003



